\qquad
(1) Attempt all Questions of both sections in same answer book / Supplementary
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places
(5) Assume suitable \& Perfect data if needed

SECTION-I

Q-1 a) Suppose that the inequalities $1-\frac{x^{2}}{2}<\frac{x \sin x}{2-2 \cos x}<1$ hold for all values of x close to zero. What if anything, does this tell you about $\begin{aligned} & \lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x} 7\end{aligned}$
b) Express $\frac{3+7 i}{2+5 i}$ in standard form $x+i y$.
c) Find imaginary part of $z=\frac{5}{(1-i)(1-i)}$
d) Find modulus and principle argument of $1-8 \sqrt{3}$.

f) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$.

Q-2 a) State and prove De' Moivre's theorem.
b) Prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n}{2}+1} \cos \left(\frac{n \pi}{4}\right)$.
c) Find the fourth roots of unity and sketch them on the unit circle.

OR

Q-2 a) State and prove triangular inequality for complex numbers.
b) Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$
c) Solve $x^{4}-x^{3}+x^{2}-x+1=0$.

Q-3 a) Check whether the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{2}-\cdots$ is (i) absolutely convergent or (ii) conditionally convergent
b) Test the convergence of $\sum_{n=1}^{\infty} \frac{n}{\left(n^{3}+1\right)^{\frac{2}{7}}}$

c) Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.

OR

Q-3 a) Find radius of convergence and interval of convergence of the power series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n n-1}}{2 n-1}$.
b) Test the convergence of $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+5}\right)^{n}$.
c) Evaluate $\lim _{x \rightarrow 0} \log _{\tan x} \tan 2 x$.

SECTION-II

Q-4 a) Find equation of tangent plane and normal line of the surface $x^{2}+y^{2}+z-9=0$ at the point $(1,2,4)$.
b) Show that $f(x, y)=-\frac{x}{\sqrt{x^{2}+y^{2}}}$ has no limit as $(x, y) \rightarrow(0,0)$.
c) Find $\frac{\partial(x, y)}{\partial(n \quad \theta)}$, if $x=r \cos \theta, y=r \sin \theta$.
d) State Maclaurin's series.

b) If $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$, prove that
$\left(y^{2}-z x\right) \frac{\partial u}{\partial x}+\left(x^{2}-y z\right) \frac{\partial u}{\partial y}-\left(\exists^{2}-(x y) \frac{\partial u}{\partial z}=\frac{1}{0}\right.$.
c) Trace the curve $y^{2}(2 a-x)=x^{3}$.

OR
Q-5 a) If $u=e^{a x} \operatorname{tanbylog} z$, verify that $\frac{\partial^{z} u}{\partial x d y d z}=\frac{\partial^{B} u}{\partial z d y \partial x}$.
b) Show that $f(x, y)=\left\{\begin{array}{cl}\frac{2 x y}{x^{2} y y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is continuous everywhere except at origin.
c) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.

Q-6 a) State Euler's theorem and if $u=\tan ^{-1}\left(\frac{x^{5}+y^{3}}{x-y}\right)$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial x}{\partial y}=\sin 2 u$.
b) Find the maxima and minima of $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
c) Expand $\log (1+\sin x)$ in powers of x.

OR
Q-6 a) If $u=\operatorname{cosec}^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt[3]{x}+\sqrt[3]{y}}\right)^{\frac{1}{2}}$, prove

$$
\begin{equation*}
\text { that } x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=\frac{1}{144} \tan u\left(13+\tan ^{2} u\right) \tag{05}
\end{equation*}
$$

b) Find greatest and smallest values that the function $f(x, y)=x y$ takes on
the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$.
c) Using Taylor's series, find the value of $\sin 44^{\circ}$.

Page 3 of 3

