Exam	Seat	No: Enrollment No:		
		C.U.SHAH UNIVERSITY		
Subjec Subjec	t Code t Nam	e 4TE01EMT1 Summer Examination-2014 Date: 27/05/20 1e: Engineering Mathematics-I	Date: 27/05/2014 Time:10:30 To 1:30	
Branch Examin	n/Sem nation	nester:- B.Tech/I Time:10:30 To 1 n: Remedial		
Instruct (1) Atto (2) Use (3) Inst (4)Drav (5) Ass	empt e of Pr ructio w nea ume s	:- all Questions of both sections in same answer book / Supplementary rogrammable calculator & any other electronic instrument is prohibited. ons written on main answer Book are strictly to be obeyed. at diagrams & figures (If necessary) at right places suitable & Perfect data if needed		
		SECTION-I		
Q-1	a)	Suppose that the inequalities $1 - \frac{x^2}{2} < \frac{x \sin x}{2 - 2 \cos x} < 1$ hold for all values of x	(01)	
		close to zero. What if anything, does this tell you about $\frac{tern}{x \to 0} \frac{x + tern}{2 - 2 \cos x}$?		
	b)	Express $\frac{3+7i}{2+5i}$ in standard form $x + iy$.	(01)	
	c)	Find imaginary part of $z = \frac{5}{(1-i)(1+i)}$	(01)	
	d)	Find modulus and principle argument of $1 - 2\sqrt{3}$.	(01)	
	e)	For what values of a is $f(x) = \begin{cases} x^2 - 1 \\ 2ax, \\ x \ge 3 \end{cases}$ continuous at every x?	(02)	
	f)	Evaluate $\frac{\lim_{x \to 0} \frac{\sin 2x}{x}}{x}$.	(01)	
Q-2	a)	State and prove De' Moivre's theorem.	(05)	
	b)	Prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos\left(\frac{n\pi}{4}\right)$.	(05)	
	c)	Find the fourth roots of unity and sketch them on the unit circle. OR	(04)	
Q-2	a)	State and prove triangular inequality for complex numbers.	(05)	
	b)	Prove that $(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta - i\sin\theta)^n = 2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$	(05)	
	c)	Solve $x^4 - x^3 + x^2 - x + 1 = 0$.	(04)	
Q-3	a)	Check whether the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$ is (i) absolutely convergent or (ii) conditionally convergent	(05)	
	b)	Test the convergence of $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^7}$	(05)	
		Page 1 of 3		

c) Evaluate
$$\lim_{x \to 0} \left(\frac{1}{z_{ins}} - \frac{1}{s} \right)$$
. (04)

OR

Q-3 a) Find radius of convergence and interval of convergence of the power series (05)

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-4}}{2n-1}.$$

b) Test the convergence of
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+5}\right)^n$$
. (05)

c) Evaluate
$$\frac{lim}{x \to 0} \log_{tanx} tan 2x.$$
 (04)

SECTION-II

Q-4 a) Find equation of tangent plane and normal line of the surface (02) $x^{2} + y^{2} + z - 9 = 0$ at the point (1, 2, 4).

b) Show that
$$f(x, y) = -\frac{x}{\sqrt{x^2 + y^2}}$$
 has no limit as $(x, y) \to (0, 0)$. (02)

c) Find
$$\frac{\partial(x, y)}{\partial(r, \theta)}$$
, if $x = r \cos \theta$, $y = r \sin \theta$. (02)

Q-5 a) If
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} = 0.$ (05)

b) If
$$u = f(x^2 + 2yz, y^2 + 2zx)$$
, prove that
 $(y^2 - zx)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} - (z^2 - xy)\frac{\partial u}{\partial z} = 0$, (05)

c) Trace the curve
$$y^2(2a - x) = x^3$$
. (04)

Q-5 a) If
$$u = e^{\alpha x} tanby log z$$
, verify that $\frac{\partial^2 u}{\partial x \partial y \partial z} = \frac{\partial^2 u}{\partial z \partial y \partial x}$. (05)

b) Show that
$$f(x, y) = \begin{cases} \frac{xxy}{x^2+y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 is continuous everywhere (05) except at origin.

c) Trace the curve
$$r^2 = a^2 \cos 2\theta$$
. (04)

Q-6 a) State Euler's theorem and if
$$u = tan^{-1} \left(\frac{x^2 + y^2}{x - y}\right)$$
 then prove (05)
that $x \frac{\delta u}{\delta x} + y \frac{\partial u}{\partial y} = sin2u$.

b) Find the maxima and minima of
$$f(x, y) = x^3 + y^3 - 3x - 12y + 20.$$
 (05)

c) Expand $\log(1 + \sin x)$ in powers of x. (04)

OR

Q-6 a) If
$$u = cosec^{-1} \left(\frac{\sqrt{n} + \sqrt{y}}{\frac{5}{\sqrt{n}} + \frac{5}{\sqrt{y}}} \right)^{\frac{4}{5}}$$
, prove (05)

27

 ${\rm that} x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{1}{144} tanu \ (13 + tan^2 u).$

- b) Find greatest and smallest values that the function f(x, y) = xy takes on (05) the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$.
- c) Using Taylor's series, find the value of sin 44°. (04) *****27***14****S

